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Abstract

In the first part of the paper we show that the space of polynomials
of degree n−1 is the unique n-dimensional Tchebycheff subspace of poly-
nomials. We also define a generalization of Tchebycheff spaces: ”Ideal
complements” and demonstrate their uniqueness.

In the second part we discuss various analogues of Tchebycheff spaces
(minimal interpolating systems) in several variables.

Preface:
I first met Professor Sharma twenty seven years ago. I was a young graduate

student, my head was filled with “Bourbakisms”, my Ph.D. thesis was about
interpolation (in Banach spaces, of course) and I was looking forward to learn
more from the renown expert in the field. To my surprise Sharma told me
that he didn’t understand what a functional was and the only theorems worth
knowing in analysis was the Taylor formula and maybe “integration by parts”
although he had his doubts about the latter. With typical modesty, he told me
that he wasn’t bright enough for the abstractions. The best he could do, was
to compute a few “right” examples and hope to get lucky. That send me for a
spin, that lasted awhile. I tried to “compute” with Sharma only to learn that
there is no way for me to keep up with his speed and accuracy. I believe that
this was a lesson learned by many of my colleagues. Fortunately “Maple” came
about and like “Colt 45”, equalized the playing field.

This paper is about solvability of various interpolation problems and its gen-
eralizations, the topic that benefited greatly by many contributions of Sharma
and his collaborators (cf. [4-7], [10], [12], [16-19]).

The paper is divided into two parts. The aim of the first part is to investigate
the general form and uniqueness of Tchebycheff and Extended Tchebycheff sub-
spaces as well as “ideal complements” in the spaces of polynomials. In particular
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we will show that the space of complex polynomials of degree at most n − 1 is
unique Tchebycheff subspace of polynomials. We also introduce a new definition
of “an ideal complement” which is formally stronger then that of a Tchebycheff
and Extended Tchebycheff subspace and study the form and uniqueness of ideal
complements.

In the second part we discuss various generalizations of Tchebycheff sub-
spaces and ideal complements in several variables. In section 2.1 we introduce
“minimal k-interpolating spaces” as a generalization of the notion of Tcheby-
cheff spaces and “minimal k-ideal complements”. We investigate the dimension
of these spaces. In section 2.2 we introduce another possible generalization
of Tchebycheff subspaces and ideal complements in several variables: namely
“minimal family of k-interpolating spaces” and “minimal family of k-ideal com-
plements”. While the investigation in section 2.1 has a distinct topological
nature, the methods used in this section 2.2 are mostly of combinatorial type.
Unlike the Tchebycheff spaces, their analogs in several variables have not re-
ceived much attention in the literature. Therefore it is not surprising, that the
ratio of the number of theorems to open problems in this part is rather small.

Going back to my early years, I was convinced that the only obstacle in
generalizing results in one variable is unbearable notations in several. By now
I know better. Yet the original hindrance remains. Given survey stile of this
article, I will take a “poetic license” not to dwell on self-evident notations, hence
saving trees and not trying the patience of a reader. For the same reason, I will
customarily give the simple proofs of a theorem and refer to an original article
for more complicated ones. As the wise man said: “a simple example explains
the situation much better”.

1 Interpolating Spaces in One Variable

All that being said, here are some notations:
Let F either be the field of real or that of the complex numbers and F[x] be

the ring of polynomials with coefficients in F. As such, F[x] is a linear space
over the field F. We use F<n[x] to denote the space of polynomials of degree
less than n; i.e.

F<n[x] := span[1, x, ..., xn−1] ⊂ F[x].

An n-dimensional subspace V ⊂ F[x] is called Tchebycheff (cf. [13], [14]) if

f ∈ V and f(xj) = 0; j = 1, ..., n

for a distinct set of points ∆ := {x1, x2, ..., xn} ⊂ F implies f = 0. That is every
non-zero f ∈ V has at most n distinct zeroes.

Equivalently (cf. [13], [14]) an n-dimensional space V ⊂ F[x] is Tchebycheff
if and only if it is interpolating:

For any distinct set of points ∆ := {x1, x2, ..., xn} ⊂ F and any set of values
a1, a2, ..., an ∈ F there exists unique function f ∈ V such that f(xj) = aj .
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Hence an n-dimensional space V ⊂ F[x] is Tchebycheff if and only if for any
distinct set of points ∆ := {x1, x2, ..., xn} ⊂ F , the space V is complemented
to an ideal

J(∆) := {f ∈ F[x] : f(x) = 0 for all x ∈ ∆}.
That is

F[x] = V ⊕ J(∆) (1.1)

for any ∆ ⊂ F with cardinality #∆ = n.
An n-dimensional subspace V ⊂ F[x] is called an Extended Tchebycheff

space (cf. [14], [15]) if every non-zero f ∈ V has at most n zeroes, counting
multiplicity.

Equivalently (cf. [13]) an n-dimensional space V ⊂ F[x] is Extended Tcheby-
cheff if and only if it is Hermite interpolating:

For any distinct set of m ≤ n points ∆ := {x1, x2, ..., xm} ⊂ F , any set of
integers N(m,n) = {n1, ...nm} with

∑m
j=1(nj − 1) = n and any set of n values

{a(k1)
1 , a

(k2)
2 , ..., a

(km)
m : kj = 0, ..., nj − 1} ⊂ F there exists a unique function

f ∈ V such that
f (kj)(xj) = a

(kj)
j ;

where f (k) denotes the k-th derivative of f .
Hence an n-dimensional space V ⊂ F[x] is Extended Tchebycheff if and

only if for any distinct set of m ≤ n points ∆ := {x1, x2, ..., xm} ⊂ F any
set of integers N(m,n) = {n1, ...nm} with

∑m
j=1(nj − 1) = n , the space V is

complemented to an ideal

J(∆,N) := {f ∈ F[x] : f (kj)(xj) = 0 ; j = 1, ...,m; kj = 0, ..., nj}.

That is
F[x] = V ⊕ J(∆,N). (1.2)

The reformulations (1.1) and (1.2) of the definitions of Tchebycheff and
Extended Tchebycheff spaces motivates the definition of Ideal Complements
as the n-dimensional spaces V ⊂ F[x] which are complemented to every ideal
J ⊂ F[x] of codimension n.

An ideal J ⊂ F[x] is a subspace of F[x] such that

f ∈ F[x], g ∈ J =⇒ fg ∈ J .

Let J be the set of all ideals in F[x] and let Jn ⊂ J be the set of all ideals of
codimension n.

Definition 1.1 An n-dimensional space V ⊂ F[x] is called an ideal complement
if

F[x] = V ⊕ J (1.3)

for every ideal J ∈ Jn
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Clearly every ideal complement is an Extended Tchebycheff space and every
Extended Tchebycheff space is Tchebycheff.

Since F[x] is a principle ideal domain (cf. [1]),

J ∈ J iff J = pF[x] (1.4)

for some polynomial p ∈ F[x].

Theorem 1.2 We have
1) If p is a polynomial of degree n. Then pF[x] ∈ Jn and

F[x] = F<n[x] ⊕ (pF[x]).

In particular F<n[x] is an ideal complement.
2) An ideal J ∈ Jn iff J = pF[x] for some p ∈ F[x] with deg p = n.
In particular every ideal J ∈ J is of finite codimension.

Proof. If p is a polynomial of degree n, then every non-zero polynomial in
pF[x] has degree at least n. Hence F<n[x] ∩ (pF[x]) = {0}. On the other hand
every f ∈ F[x] can be written as f = pq + r with deg r < n. That proves the
first part of the theorem. It also shows that pF[x] is an ideal of codimension n.
To verify the rest of 2), assume that J ∈ Jn. Then there exists a polynomial q
such that J = qF[x]. If deg q �= n then, by part 1), codimJ �= n which gives the
contradiction.

The last theorem shows that F<n[x] is an ideal complement. In particular
F<n[x] is an Extended Tchebycheff space. Of course this is nothing new, except
that the division algorithm used in the proof of the Theorem did not employ
any determinants or complicated construction of basic polynomials!

In the next section we show C<n[x] is the unique n-dimensional Tchebycheff
subspace in C[x] and therefore it is the unique ideal complement in C[x]. In
particular, Tchebycheff spaces, Extended Tchebycheff spaces and ideal comple-
ments coincide.

In section 3, we show that for n > 1 the space R<n[x] is the unique ideal
complement in R[x] but not a unique Tchebycheff or Extended Tchebycheff
subspace.

1.1 Complex Case

We start with the quick corollary of Theorem 1.2:

Theorem 1.3 The space V = C<n[x] is the unique subspace of C[x] which
complements every J ∈ Jn.

Proof. Let V �= C<n[x] be an n-dimensional subspace of C[x]. Then V
contains a polynomial q of degree ≥ n. Hence q = pf with deg p = n. Let
J = pC[x]. By proposition J ∈ Jn and q ∈ V ∩ J . Thus V is not complemented
to J .

For the Tchebycheff spaces we have:
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Theorem 1.4 The space V = C<n[x] is the unique n-dimensional Tchebycheff
subspace of C[x].

Proof. Suppose that V �= C≤n[x] is an n-dimensional Tchebycheff subspace
of C[x]. Then V contains a polynomial f with deg f ≥ n. Since V is Tchebycheff,
hence f has at most n − 1 zeroes: ξ1, ..., ξk with k < n. Once again, since V
is Tchebycheff, there exists a polynomial g ∈ V , such that g(ξj) = 1 for all
j = 1, ..., k. Hence f and g are relative primes and ( f

g )′ is different from 0. For
every c ∈ C, consider a new polynomial q(c, x) = f(x) − cg(x). We now claim
that for all, but a finite many values of c ∈ C, the polynomial q(c, x) has only
simple zeroes. Indeed let ζ1, ..., ζN be all the zeroes of the polynomial fg′ − gf ′

and assume that

c �= f(ζj)
g(ζj)

(1.5)

for those ζj , for which g(ζj) �= 0. Then if x0 is a multiple root of f(x) − cg(x),
we have {

f(x0) − cg(x0) = 0
f ′(x0) − cg′(x0) = 0 .

Since f and g are relative primes, hence g(x0) �= 0. From the first of the
equations above, we obtain c = f(x0)

g(x0)
and substituting it into the second equa-

tion, we have f(x0)g′(x0) − g(x0)f ′(x0) = 0, which contradicts (1.5).

Corollary 1.5 The space V = C<n[x] is the unique n-dimensional Extended
Tchebycheff subspace of C[x].

1.2 Real Case

Real ideal complements have almost the same description as complex ideal com-
plements.

Theorem 1.6 Let V be an n-dimensional ideal complement. If n > 1 then
V = R<n[x]. If n = 1, then V is the set of constant multiples of any strictly
positive polynomial; V = span{p}, p ∈ R[x] and p > 0.

Proof. Let n > 1 and let ξ1, ..., ξn be distinct points in R. Since V is an
ideal complement, in particular it is a Tchebycheff subspace. Hence there are
n polynomials p1, ..., pn ∈ V such that pk(ξj) = δj,k. These polynomials are
linearly independent and thus span the space V . If max{deg p : p ∈ V } ≥ n
then at least one of the polynomials, say p1 has degree greater then n−1. Since
p1 has a linear factor, it follows that p1 has a factor of degree n and hence V is
not an ideal complement. The case n = 1 is trivial.

Corollary 1.7 For n = 1 an n-dimensional space V is Tchebycheff if and
only if it is an ideal complement. For n > 1 there exists an n-dimensional
Tchebycheff subspace of R[x] which is not an ideal complement.
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Proof. Any subspace V ⊂ R[x] which is of the form

V = r(x)R<n[s(x)] := span{r(x), r(x)s(x), ..., r(x)sn−1(x)} (1.6)

where r(x) is a strictly positive polynomial in R[x] and s is an injective polyno-
mial mapping from R → R is clearly a Tchebycheff space. Yet if deg r > 0 then,
as follows from the previous Theorem, it is not an ideal complement.

This argument leads to the a reasonable possibility that a subspace V ⊂
R[x] is Tchebycheff if and only if V = r(x)R<n[s(x)] for some strictly positive
polynomial r(x) and an injective polynomial mapping s from R → R.

This is clearly true for n = 1.
Unfortunately this is not so for n > 1. Indeed here is a counterexample:
Let

V := span{1 + x2, x3}. (1.7)

We have

det
[

1 + x2 x3

1 + a2 a3

]
= − (x − a)

(
x2a2 + x2 + xa + a2

)

= − (x − a) (x2a2 +
1
2
(x2 + a2 + (x + a)2))

which is equal to zero if and only if x = a. Hence V is a Tchebycheff space
that is not of the form (1.6).

Furthermore

det
[

1 + x2 x3

2x 3x2

]
= 3x2 + x4 = 0 if x = 0.

Hence the Tchebycheff space V defined by (1.7) is not an Extended Tcheby-
cheff space.

On the other hand the space

V = span{x2 + 1, x3 + 2x}

is an Extended Tchebycheff space. Indeed

det
[

x2 + 1 x3 + 2x
2x 3x2 + 2

]
= x4 + x2 + 1 > 0.

And if x �= a then

det
[

x2 + 1 x3 + 2x
a2 + 1 a3 + 2a

]
= − (x − a)

(
x2a2 + x2 − xa + a2 + 2

)

= − (x − a) (
1
4

(2x − a)2 + x2a2 +
3
4
a2 + 2) �= 0.
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Conclusion 1.8 In R[x] there are Tchebycheff spaces which are not Extended
Tchebycheff spaces and there are Extended Tchebycheff spaces which are not of
the form (1.6).

Problem 1.9 What is the general form of Tchebycheff spaces in R[x]? What
is the general form of Extended Tchebycheff spaces in R[x]?

Now suppose that 1 ∈ V and V is a Tchebycheff space. Does that imply
that

V = R<n[s(x)] ? (1.8)

For n = 2 it is so. Indeed if V = span{1, s(x)} then s is strictly monotone and
hence an injection.

Our next example shows that (1.8) fails for n = 3:
Let V = span{1, x, x4}. Then

det

⎡
⎣ 1 x x4

1 a a4

1 b b4

⎤
⎦ = ab4 − a4b − xb4 + x4b + xa4 − x4a

= −1
2

(−b + a) (x − b) (x − a) ((x2 + a2 + b2) + (x + a + b)2)

Hence span{1, x, x4} is a Tchebycheff space that is not an ideal complement.

2 Interpolation Systems in Several Variables.

Let F[x1, ..., xd] = F[x] be the ring of polynomials of d variables and let F≤m[x]
be the space of polynomials of degree at most m. For an ideal J ⊂ F[x] we
define

Z(J) := {x ∈F
d : f(x) = 0 for all f ∈ J}.

If an ideal J ⊂ F is generated by polynomials f1, f2..., fn, we use the standard
notation:

J =< f1, f2..., fn >=< fj : j = 1, ..., n > .

Let, once again, Jn denotes the family of ideals of codimension n.
For ideal J ∈ Jn, the set Z(J) is finite and moreover

#Z(J) ≤ n

An ideal J ⊂ F is called radical if fm ∈ J implies f ∈ J . It is well known
(cf. [9]) that an ideal J ∈ Jn is radical if and only if #Z(J) = n.

In several variables there are no Tchebycheff subspaces and therefore there
are no ideal complements. For the real field this follows from extremely cute
“Mairhuber argument (cf [15])”:

Let V = span[f1, f2, ..., fn]. And let ∆ = {x1,x2,x3, ...,xn} be distinct
points in R

d with d ≥ 2. Position two points x1,x2 on diametrically opposite
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ends of the unit circle and points x3, ...,xn outside the circle. If the space V is
Tchebycheff, that implies that the determinant

D(∆) = det [fk(xj)] �= 0

for any ∆. As we rotate the diameter, the points x1 and x2 switch positions
and hence D(∆) changes sign. By the intermediate value theorem, there exists
a pair x1,x2 such that D(∆) = 0; hence V is not interpolating at these points.

In the absence of an intermediate value theorem, the complex case utilizes
different tools. Since this article deals with polynomials, we present an argument
based on the attributes from Algebraic Geometry:

Let

Z := {(x1,x2,x3, ...,xn) ∈ C
n·d : D(∆) = det [fk(xj)] = 0}.

Let
Uj,k := {(x1,x2,x3, ...,xn) ∈ C

n·d : xj = xk} and U := ∪
j �=k

Uj,k

Since Z is the set of solutions of one equation D(∆) = 0 in C
nd, hence Z is

an algebraic variety of codimension one, thus dimZ = nd − 1. Each Uj,k is the
zero locus of d equations: xj = xk, and hence it is a variety of codimension d.
We conclude that for d > 1:

dim U = max dim Uj,k = nd − d < nd − 1 = dim Z.

Hence there exists an n-tuple (x1,x2,x3, ...,xn) ∈ Z which is not in U . Thus
the equation

D(∆) = det [fk(xj)] = 0

has a solution for some set ∆ of distinct points in C
d, which implies that V

is not a Tchebycheff space. In the absence of Tchebycheff Spaces in several
variables, we have to give something up. We propose two possible analogues of
Tchebycheff spaces.

2.1 Interpolating Spaces

Definition 2.1 A subspace V ⊂ F[x] is called k-interpolating if for every k
distinct points x1, ...,xk in F

d and for every distinct values α1, ..., αk there exists
f ∈ V such that

f(xj) = αj ; j = 1, ..., k.

Clearly if V is k-interpolating then dimV ≥ k. If dimV = k then V is k-
interpolating if and only if V is Tchebycheff. As we mentioned earlier for d > 1
Tchebycheff spaces do not exist. The k-interpolating spaces do exist. That
means that we give up uniqueness of the interpolating function f ∈ V but still
insist on the existence of one. However we do not want to abandon uniqueness
all together. One way of doing so is to ask for a k-interpolating space of minimal
dimension. Therefore the problem in several variables can be reformulated as
follows:
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Problem 2.2 What is the minimal dimension of k-interpolating spaces in F[x]?
What are the k-interpolating subspaces of F[x] of minimal dimension.

Just as in the last section, we can observe that a space V is k-interpolating
if and only if for every radical ideal J ∈ F[x] of codimension k there exists a
subspace E ⊂ V such that

E ⊕ J = F[x].

Hence it seems natural to extend this definition to all ideals.

Definition 2.3 A space V ⊂ F[x] is called a k−ideal complement if for every
ideal J of codimension k there exists a subspace E ⊂ V such that

E ⊕ J = F[x].

Once again we have the problem:

Problem 2.4 What is the minimal dimension of a k−ideal complement? What
are the k-ideal complements of minimal dimension? Are the minimal k-ideal
complements unique? Do the minimal k-ideal complements coincide with the
minimal k-interpolating spaces.

There are some results ( cf. [8], [22], [23], [24], [25]) concerning the minimal
dimension of k-interpolating subspaces in R[x] . The most stunning of these is
due to F. Cohen and D. Handel [8] (cf. also [24]):

Theorem 2.5 Let a(k) be the minimal dimension of k-interpolating subspaces
in R[x, y]. Then

2k − η(k) ≤ a(k) ≤ 2k − 1,

where η(k) is the number of 1’s in the binary representation of the integer n.

In fact for k = 3 the value a(3) = 4 as the “unnatural” appearance of η(k)
in the lower bound would predict (cf[22]). A minimal 3-interpolating subspace
is spanned by polynomials {1, x, y, x2 + y2}. For k = 4 the lower and the
upper bounds coincide. Hence a(4) = 7. A minimal 4-interpolating subspace is
spanned by polynomials {1, x, y, x2 − y2, xy, x3 − 3xy2, y3 − 3x2y}.

To the best of my knowledge, the exact value for a(5) is not known. The
span of the first 2k − 1 harmonic polynomials always forms a k-interpolating
subspace in R[x, y]. For d > 2, the only reasonable bound known to me (cf.
[22], [23]) is

1
2
(d + 1)k ≤ a(k) ≤ d(k + 1).

As far as I know there are no results on minimal k-dimensional interpolating
subspaces in the complex case. The ideal complements of minimal dimension
have not been studied in either field.

It follows from the Theorem 2.9 mentioned in the next section, that the
space F<k[x] is a k−ideal complement.

Now the standard transversality argument (cf. [21], [23]) gives us a better
estimate:
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Theorem 2.6 There exists a k-ideal complement V ⊂ F<k[x] with dim V ≤
(d + 1)k.

2.2 Interpolating Families in Several Variables.

As we mentioned in the previous section, the four-dimensional space spanned
by polynomials {1, x, y, x2 + y2} is 3-interpolating in R[x, y]. Indeed if we have
three points u1, u2, u3 ∈ R

2 that do not lie on the same line, then the three-
dimensional space spanned by {1, x, y} interpolates at those points. On the
other hand if three distinct points u1, u2, u3 ∈ R

2 do lie on the same line, then
either the space spanned by {1, x, x2 + y2} or by {1, y, x2 + y2} interpolate at
those points. In other words in order to accomplish the interpolation at arbitrary
three points, we do not need all (infinitely many) three-dimensional subspaces
of span{1, x, y, x2 + y2}. It is sufficient to consider three of them:

span{1, x, y}, span{1, x, x2 + y2} and span{1, y, x2 + y2}.

This consideration prompts the following definition:

Definition 2.7 A family F of k-dimensional subspaces of F[x] is called a family
of k−ideal complements, if for every ideal J ⊂ F[x] of codimension k there exists
a subspace E ∈ F such that

E ⊕ J = F[x].

A family F of k-dimensional subspaces of F[x] is called a k−interpolating
family if for every radical ideal J ⊂ F[x] of codimension k there exists a subspace
E ∈ F such that

E ⊕ J = F[x].

With these definitions come apparent open questions:

Problem 2.8 What is the minimal number of subspaces in a family of k−ideal
complements? What is the minimal number of subspaces in a k−interpolating
family?

A subspace V ⊂ F[x1, ..., xd] = F[x] is called D-invariant if

f ∈ V =⇒ ∂

∂xj
f ∈ V,∀j = 1, ..., d.

The next theorem was first proved in [11]. The introduction of Groebner bases,
made it a simple theorem (cf [3]):

Theorem 2.9 For every J ∈ Jn there exists a D-invariant subspace V ⊂ F[x]
spanned by monomials, such that

V ⊕ J = F[x].
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A moment of reflection on D-invariance and monomial nature of this space
leads to the conclusion that every such space is a subspace of F<n[x] and since
there are only finitely many monomials in F<n[x], hence there are only finitely
many such spaces.

Corollary 2.10 There exist a finite k−ideal family.

It is convenient to use Young tables to visualize such subspaces. For instance
for n = 4 the five subspaces in question are given by tables (staircases):

Γ1 =

∣∣∣∣∣∣∣∣

�
�
�
�

Γ2 =

∣∣∣∣∣∣∣∣
�
�
� �

Γ3 =

∣∣∣∣∣∣∣∣ � �
� �

Γ4 =

∣∣∣∣∣∣∣∣ �
� � �

Γ5 =

∣∣∣∣∣∣∣∣ � � � �

These five tables represent all possible D-invariant complements to ideals in
J4. Thinking of the vertical axes as the number of monomials in y, we can write
all five gammas as

Γ1 = [1, y, y2, y3],Γ2 = [1, y, y2, x],Γ3 = [1, y, x, xy]
Γ4 = [1, y, x, x2],Γ5 = [1, x, x2, x3].

Now the spaces Gj := spanΓj represent the five complements.
Clearly no four of those subspaces can serve the same purpose, for an ideal

generated by, say < x4, y >∈ J4 is not complemented to the first four subspaces.
It is also easy to see that the minimal 2-interpolating and 2-ideal family is

F = {span{1, x}, span{1, y}},
since this family is 2-ideal, by the last theorem, and no one two-dimensional
subspace is 2-interpolating, by the results of the previous section.

Theorem 2.11 The minimal number of subspaces in a family of 3-ideal com-
plements in C[x, y] is 3.

Proof. It follows from the Theorem 2.9, that the family F consisting of
three spaces:

span{1, x, x2}, span{1, x, y} and span{1, y, y2}
is a k-ideal family. Thus it remains to proof that no two three-dimensional
spaces form a family of k-ideal complements. Let the subspaces V1 and V2 form
such a family. Consider several cases:

11



Case 1: There exists a non-constant polynomial p ∈ C[x, y] and polynomials
fk ∈ Vk such that fk = hk · p. Then consider the set

Z := {(x, y) ∈ C
2 : p(x, y) = 0}.

This is an infinite set and hence contains three distinct points

(x1, y1), (x2, y2), (x3, y3) ∈ Z.

Next consider the ideal

J := {f ∈ C[x, y] : f(xj , yj) = 0, j = 1, 2, 3}.
Clearly, J is a radical ideal in J3. Since for k = 1, 2 we have fk(xj , yj) = 0 and
since J is a radical, this implies that fk ∈ J and hence fk ∈ Vk ∩ J �= {0}. In
particular, neither V1 nor V2 complement J and {V1, V2} is not a k-ideal family.

Case 2.: Suppose that

N := max deg{f : f ∈ V1} · max deg{f : f ∈ V2} ≥ 3.

Let fk ∈ Vk be any polynomials, such that

deg fk = max deg{f : f ∈ Vk}, k = 1, 2,

then (by Case 1) they do not contain a common non-zero factor. By Bezout’s
Theorem (cf. [9]), there exist N ≥ 3 solutions (counting multiplicity) to the set
of equations

fk(x, y) = 0, k = 1, 2.

Hence, once again, there exist an ideal J ∈ J3 such that fk ∈ Vk ∩ J �= {0}.
Case 3. The last remaining case is the case, when V1 consists of polynomials

of degree one and V2 consists of polynomials of degree two and does not contain
any non-constant linear polynomial. Since dimVk = 3, hence V1 = span{1, x, y}
and V2 is spanned by three quadratic polynomials and does not contain a non-
constant linear function. We claim that at least one polynomial in V2 has a linear
factor, thus reducing this case to Case 1. Indeed, suppose that V2 is spanned
by quadratic polynomials {fj(x, y), j = 1, 2, 3}. Consider the polynomial

p(x) :=
3∑

j=1

ajfj(x,Ax + B) ∈ V2.

This is a quadratic polynomial with three coefficients that depend on five pa-
rameters: A,B, aj . Setting these coefficients to zero, we obtain three equations
in five unknowns, which clearly have a solution in C. Thus the polynomial

3∑
j=1

ajfj(xy)

has a linear factor: y − Ax − B.
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